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Nonsteady diffusion in a system with identical nonconducting spherical particles 
is considered, taking account of mass transfer with these particles. 

Heat and mass transfer in heterogeneous two-phase or two-component systems forms the 
subject of a broad literature. Significant difficulties, which have yet to be overcome, arise 
even in studying the simplest problems on the dependence of the effective transfer coeffi- 
cients (of heat conduction, diffusion) in a steady process on the corresponding coefficients 
for the phases or components, and also on the concentration and structural characteristics of 
the system (see, for example, the reviews [1-3]). 

The situation is considerably complicated when analyzing nonsteady processes (in this 
case, the coefficients are not algebraic quantities but operators including differentiation 
and integration with respect to time [4]), and also when investigating combined processes of 
heat and mass at the interfaces between the phases or components. In the latter case, there 
also appear new physical effects -- thermodiffusion and diffusional thermal conductivity of the 
heterogeneous system [5] -- and the influence of crowding of the transfer processes on the co- 
efficients of interphase or intercomponent transfer becomes significant. 

In this work, the effects of the crowding are investigated, together with the effects of 
nonsteady conditions and interphase transfer, for a relatively simple diffusional process in 
a moderately concentrated system of identical spherical particles. The diffusion occurs only 
in the intervals between particles; the system is regarded as macroscopically homogeneous and 
steady (~ = const, a = const), and the Peclet number, characterizing the role of convection 

This problem is of direct applied interest for diffusion processes in a cloud of droplets 
or solid particles in the presence of vaporization (sublimation), solution, condensation, or 
crystallization [7], the drying of disperse materials [8], sorption in granular media [9], 
the diffusional growth or solution of inhomogeneities in metals and other solid materials 
[i0], mass transfer in a series of biological systems [ii], etc. 

The investigation is also performed on the basis of powerful methods averaging over the 
ensemble of particle configurations in the disperse phase, in combination with methods of 
self-consistent-field theory [12, 13]. These methods were briefly outlined in [14] in their 
application to processes of the transfer of a scalar characteristic (including heat and im- 
purity mass); they were applied to specific problems, for example, in [4, 5]. 

Macroscopic Description of the Diffusion Process 

According to the results of [12-14], the process of impurity transfer in the intervals 
between particles is described by the equation 

~Oco/Ot = - -  vq + h, (1) 

obtained by averaging over the ensemble; for the mean flux q and source function h in the 
given case, the following expressions are valid 

q = - - D o v  c + Do~ .I cSndr, 
f = a  

= - - n  I q*ndr, c =  eCo+ 9cl. (2) tz 
r = a  
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Here differentiation is performed with respect to the components of the radius vector R + r 
and integration with respect to the surface of an isolated (sample) particle with its center 
at the point R. 

From general considerations of tensor dimensionality, the quantities in Eq. (2) may also 
be written in the form 

q = - -  DVC o, h = K (c, - -  Co) - -  Leo, ( 3 )  

where D, K, and L are certain operators, in the general case. 

Using Eq. (3), Eq. (i) is formally transformed to give 

eOco/Ot = DAco + K (c. - -  co) - -  tCo. ( 4 )  

The quantity c,, which is understood to be the saturated concentration of impurity at the 
particle surface (see below), depends on the time, in the general case. 

The self-consistency condition of the theory, allowing D, K, and L to be determined in 
the final analysis, is obtained by equating Eqs. (2) and (3). To calculate the integrals in 
Eq. (2), a special problem regarding the perturbations introduced into the concentration 
field by the sample particle must be solved. Note that the "mean concentration in the dis- 
perse phase" ci at the point R is introduced formally in the given case (cf. [5]) and is the 
result of averaging the quantity c~ over the surface of the sample particle with its center 
at the given point. 

The continuum description of the process using Eqs. (i) and (4) and also Eq. (2) is 
meaningful in the case when the spatial scale A of the field Co is much larger than ~, which 
is what is assumed blow. In this case, the concentration Co in the vicinity of the sample 
particle with its center at point R is described by the Taylor expansion 

co(t, R - + r ) = C o + E r + r M r +  . . . ( 5 )  

So as to work with algebraic quantities rather than operators, it is expedient to apply 
a Fourier transformation with respect to the time to all the relations. Then Eq. (4) is re- 
placed by the relation 

D'ACo + G (C, - -  Co) = O, 

G = K ' +  L' + i ~ ,  C ,  = c .K ' /G.  ( 6 )  

Here the prime is introduced to distinguish the parameters D', K', and L' from the operators 
D, K, and L; the previous symbols are retained to denote the Fourier transforms of the other 
quantities. It is clear that Eqs. (2) and (5) retain the same form after the transformation, 
while in Eq. (3) D, K, and L are replaced by D', K', and L'. 

Note that any other linear integral transformation could have been used instead of the 
Fourier transformation-- for example, a Laplace transformation. 

From Eq. (6), the following relation exists between the coefficients of the expansion 
in Eq. (5) 

Sp M = - -  (G/2D')(C,  - -  Co). (7 )  

Problem for the Sample Particle 

In the general case of a concentrated disperse system, the quantities c~ and q* appear- 
ing in the integrands in Eq. (2) are determined by formulating a problem regarding the im- 
purity diffusion in a hypothetical inhomogeneous medium outside the sample particle, the 
effective diffusion coefficient in which depends in a special way on the distance to the 
particle center [12-14]. For a system of moderate concentration, this dependence may be 
neglected. Then the properties of the hypothetical medium coincide with the mean properties 
of the disperse system, and the well-known model of an "effective medium" usually used on an 
empirical basis is obtained [3]. 

Thus, the following problem is obtained for the Fourier transform of the concentration c~ 

D'Ac$ + G ( C , - - c ~ ) = O ;  c$ ~-Co, r--+oo: 

- - D ' n v c ~  = k ( c , - -  cg), r = a. ( 8 )  
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It is natural to seek c~ in the form of the sum co + ~; then, from Eq. (8), the following 
problem is obtained for 

Aq~--sZEp= O; q~-+O, r--+oo; 

n v  (co = ~:) + ~ (c ,  - -  co - -  ~p) = O, r = a. (9) 
Here and below, the following notation is used 

s 2 = G/D', m 2 = K'/D', o- fi/D' (i0) 

Representing the desired solution of Eq. (9) in the form of a series in spherical func- 
tions, and transforming the expansion in Eq. (5) for the field co to the same form, ordinary 
differential equations with boundary conditions for the coefficients of this series are ob- 
tained from Eq. (9). 

Taking into account that the contribution to the integrals in Eq. (2) comes only from 
terms of this series with spherical functions of zero and first rank, the determination of the 
coefficients is limited solely to these functions. Then 

{f = B ,  [ ( , , , 2 ( , s r ) - -  B~_[.T ) K 3 / 2 ( s r ) E r  @ �9 . �9 , (ii) 

where the Macdonald functions have been introduced, together with the coefficient 

B~=(Fl ,o+oaKl /2 ) - t { [oa (1  m2a2) nz2a2 ] (c,--Co) + ( !  - mz) (1 ~a I sZa2 Co}, 
' -  . ' 6 3 " , s 2 2 ,) 3 

B2 = [F3/2 4 (~a -- 1) K3/~I -~ (1 -- ~a), 

F j ( s r )  = - - a  - -  - -  = 

dr r F Fs (sa)J 
(12) 

The expression obtained for CI = c1(i<, R) 

s~ - 7 ,  J C o -  - - ~ ( c . - C o )  + s ~ K , / ~ ,  (13) 

which allows the mean concentration c to be determined at any point R as the sum sCo + 0C~ 
and then it is possible to find 

{ [ s'aai da - ( 1 -  ~ saa%/3 ]} 
V c : i -T- P 6 F1/2 -7- oaKl/2 K1/2 E. (14) 

In calculating Eqs. (12)-(14), expressions for C, and SpM are taken from Eqs. (6) and (7) 

and the definitions of Eq. (i0) are used. 

Using Eq. (14), and calculating the integrals in Eq. (2) using Eqs. (Ii) and (12), and 
then equating the resulting expressions for q and h with the corresponding representations in 
Eq. (3), the following system of nonlinear equations is obtained for the unknowns D ~, K', 

and L ' 

I<'-- 3pka [i ~-mZaZ6 ~176 -U Oa]~l/2 /~1/2 ~J 

Z, p k a ( s Z m 2 ) [ _ ~  @ ([--oa/2)Kl/2]Ft/2 -i- oaK2~2 ' 

D' (oa - l) K ~ / ~ I .  (15) - - =  1 4 - 9  [--1 '-- s i n 2  ~  KI/2 + F s / o ~ ( o a _ l ) K s , 2  
Do L 6 Fl/2 + ~ - J 

As a result of solving this system, the quantities D', K', and L' (which, generally 
speaking, are complex) may in principle be expressed in the form of functions of the physical 
parameters and it0, which is completely determined by the relation in Eq. (6). Then, to ob- 
tain the diffusion equation in the form in Eq. (4), an inverse Fourier transformation must 

be used. 

It is expedient to introduce, in addition to Eq. (i0), the dimensionless time T and the 
parameters 
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Fig. i. The dependence 
of B = D/Do on p for 
various 6. 
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Fig. 2. The dependence 
of x on p at various 6. 

x = K'% F =  L'% z =  Do/D', p =  io~s, 6 = ka/D o, "c = aZ/Do (16) 

in which Eq. (15) is written, after transformations using the well-known analytical ex- 
pressions for the Macdonald functions, in the form 

2 § -7 sa (1 -}- sa + z6)-q 
,\ 

tt = (9/2)z6 (tj T p) (3 @ so)(1 @ sa ~- z6)-*, 

1 1 T O { - -  1-~- [1 (sa)Z ( (sa)Z) ] - -  = I i 

z 2 r 1 + 6 sa (1 @ sa -47 z6) -~ - -  

-- [3 (1 + sa) -+ (sa) 21 [(2 --; z6) (1 -' so) + (sa)2l -~ } 
I 

sa = [z(x " ! l q  P)I 1/2. (17) 

The p r o b l e m  o f  d e s c r i b i n g  the  d i f f u s i o n a l  p r o c e s s  e v i d e n t l y  r e d u c e s  to i n v e s t i g a t i o n  of  
t h e  s y s t e m  i n  Eq. ( 1 7 ) .  

Steady Process 

In this case, D and K are algebraic quantities (the prime in the notation may be omitted), 
p = O, y = O, sa = z/-zx. Two equations are obtained from Eq. (!7) for the unknowns x and z 

-J-1 = 1  4 p 1 & .__  - . 
z 36 (2 + zf) (1 -47 l / z x  ) q- zx 

(18) 

It is of interest to investigate Eq. (18) in the limiting cases 6 << 1 and 6 >> i, when 
the mass transfer is limited by kinetic effects and diffusion, respectively. When ~ << i, 
x and ~ = I/zmaybe sought in the form of power series in 6; it is evident from Eq. (18) that 
x~6, 3~i. The equations for the coefficients of these series are obtained in the standard 
manner from Eq. (18). Retaining only the first two terms, computations lead to the ex- 
pression 

x~39(i--3) 6, 1 3 ~ 1 - -  3__9_p ~ p 99--1 6. (19) 
2 4 1 - -  39/2 

When 6 >> i, x~ z~ i, In this case, x and ~ are sought in the form of series in inverse 
powers of 6 and, instead of Eq. (19), the expression obtained is 

- ~ ( I + V T  r - - - + p  a ~  x ' ~ [  1 6 3 ' 1 47 ] / T  ' 

P~gt I -- T 1 + 
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where ~ is the solution of the equation 

f = 1 + 7 -  + 

T =  

f) ] 
-g VT-  , 

- ? V +  (21) 

The de- The quantities K and D are expressed in terms of x and ~ = i/z using Eq. (16). 
pendences of x and B on p at different 6 obtained numerically from Eq. (18) and also the 
limiting dependences in Eqs. (19) and (20) are shown in Figs. 1 and 2. 

The effective diffusion coefficient thus depends on the intensity of the interphase mass 
transfer, which is a new property specific to heterogeneous disperse systems. With increase 
in ~ from zero to infinity, it rises slowly at any p# 0 from the value (l-3p/2)Do in a system 
of neutral particles obtained earlier from the effective-medium-method to the value sDo in a 
system of particles with a fixed concentration at their surfaces, which follows formally from 
the concept of perfectly identical topological properties of the phases of a heterogeneous 
system. 

The effective coefficient of interphase transfer referred to unit volume of mixture is 
found to differ from the value which would be obtained with simple summation of the contribu- 
tions from all the particles in unit volume, under the assumption that the kinetic and diffu- 
sion coefficients are k and Do, respectively. Taking into account that the quantity k should 
not depend on the crowding, this effect is described by introducing the new diffusion co- 
efficient D e strictly specific to the mass-transfer process. Equating the total flux of n 
particles having the previous value of k and D = D e with the value K(c,-co) gives 

ka/Do _ x De _ ( 3~_ ] )-I 

]+ka, /De 3p ' Do , 6 (22 )  

In particular, it follows from Eqs. (19) and (20) that 

De,~Do,  6< 1; De ~ (s~3p)Do, 6 ~  1. (23 )  

At small O, it follows from Eq. (21) that ~ ~3p(l + 3~3p), i.e., De/Do ~i + ~ Thus, the 
influence of crowdedness on the effective values of the diffusion coefficient determined from 
the rate velocity of longitudinal "transitional" diffusion in the system and from the rate of 
interphase mass transfer is found to be completely different. The dependence of De/Do on p 
at various ~ is shown in Fig. 3. As in the case of large Peclet numbers [6], the crowdedness 
of the process intensifies the interphase transfer. 

Nonsteady Process 

For simplicity, only the limiting cases ~§ and 6 § will be considered. It may be 
shown that Eq. (4) is differential only at sufficiently small frequencies. It is therefore 
assumed that Ipl << i. 

In the case when the mass transfer is limited by kinetic effects (6§ it follows from 
Eq. (17) that x.~F~O, sa~zp. In this case, retaining terms of order up to p, Eq. (16) and 
the third relation in Eq. (17) lead to the result 

D'  39s a z 
= - -  ~ 1 - -  3 p  + io~% T - -  (24 )  

Do 2 4 (1 - -  39/2) Do 

This relation corresponds to the following relaxational equation, corresponding to the first 
relation in Eq. (3) 

[ -- 0 i 1 - -  39  ~ 3 p s  T ~ -  V O o ~  - -  , - -  ( 2 5 )  
2 ~ 4 ( 1 - - 3 9 / 2 )  D e 

Substituting Eq. (24) into Eq. (6) and performing in an inverse Fourier transformation, 
simple computations lead, within the limits of the adopted accuracy, to the result 

s [1 3ps 0 
- -  T - -  [ 4 (! - - 3 p / 2 )  z at 

This equation is obviously of elliptical type. 

- -  ~ 1 DoAco. (26)  
Ot 2 
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Fig. 3. Dependence of Be = De/Do on p at various 6. 

Fig. 4. Dependence of the coefficient in Eq. (28) on p: i) f; 
2) ~; 3) 1 + a + ~'. The value of f is determined only when 
p~ 0.231, which is associated with the use of the approximation 
of a moderately concentrated disperse system. 

Thus, it follows from Eq. (25) that the gradient of the mean concentration relaxes to 
its steady value, corresponding to the given mean impurity flux q, and not vice versa, as is 
fairly often assumed for processes of heat and mass transfer in relaxing media, and leads not 
to Eq. (26) but to the hyperbolic equation of heat conduction or diffusion (see [15, 16] and 
also [17, 18], where analogous conclusions are reached from general thermodynamic considera- 
tions). 

Note that Eqs. (25) and (26) are only applicable to sufficiently slow processes of 
characteristic frequency u<< I/T. Further refinement of the results for small p leads to the 
appearance in Eq. (24) of a term proportional to (im)3/2; in this case, Eqs. (25) and (26) 
become integrodifferential, as shown for the example of the problem of heat transfer in a 
disperse system in [4]. 

The situation when the mass transfer is limited by diffusion (6+~) is now considered. 
It follows from the third relation in Eq. (17) that the dispersion D' is absent in the given 
case, i.e., D' = eDo. Assuming that Ipl << ~mp 

3,( ']-', 
c~ . . . .  1 + (1 + ~z') T ,  = - -  _ ( 2 7 )  

2 F7 T 2 3 + e f 2 

where f, as before, is determined from Eq. (21). 

In this case, Eq. (4) takes the form 

( l + ~ z - ~ - ~ ' )  OCo ~DoAc o q _ f  c , - - e  o 
Ot 

dc .k 
,,c~ - (28) 

dt 

Thus, with a fixed impurity concentration, there is no relaxation of the mean-concentra- 
tion gradient, in general, at the surface of the disperse-phase particles, but the dispersion 
of the quantities K' and L' leads to new effects, in particular, it is as if the volume of 
space between the particles which is accessible to the diffusing impurity is increased; the 
rate of change of the surface concentration also begins to play a role. The coefficients of 
Eq. (28) are shown in Fig. 4. 

Equation (28) is only valid for processes of characteristic frequency satisfying the 
condition ~<< p/T. Taking the next terms in the expansions of Eq. (27) in powers of i~ 
again leads, as is readily shown, to an elliptical diffusion equation. 

NOTATION 

A, spatial scale of the concentration field; a, particle radius; Bi, coefficients in Eq. 
(ii); co, ci, c, mean concentrations in the intervals between particles, in the particles, 
and in the mixture (the last two quantities are formally introduced); c,, concentration at the 
particle surface; D, D', operator of the diffusion coefficient and its Fourier transform; Do, 
the molecular diffusion coefficient of the impurity; De, effective diffusion coefficient de- 
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termining the rate of mass transfer; C,, G, quantities defined in Eq. (6); f, root of Eq. 
(21); h, source function; k, kinetic coefficient; K, L and K', L', operators in Eq. (3) and 
their Fourier transforms; C, E, M, coefficients of the expansion in Eq. (5); n, numerical 
concentration of the particles; p = imTE; q, mean impurity flux; R, r, radius vectors; m, s, 
quantities introduced in Eq. (i0); x, y, z, parameters introduced in Eq. (16); ~, ~', co- 
efficients in Eq. (27); 8 = i/z; ~ = k~/Do; E = l-p; p, volume concentration of particles in 
the system; ~k/Do: ~=a~/D~: m , perturbation of the field co close to the sample particle; ~, 
frequency (parameter of the Fourier transformation); an asterisk denotes quantities pertain- 
ing to the sample particle. 

LITERATURE CITED 

i. L. K. H. Van Beek, "Dielectric behavior of heterogeneous systems," in: Progress in Di- 
electrics, \7ol. 7, Heywood, London (1967), pp. 69-114. 

2. T. Hanai, "Electrical properties of emulsions," in: Emulsion Science, Academic, Lon- 
don-New York (1968), pp. 353-478. 

3. G, N. Dul'nev and V. V. Novikov, "Methods of analytically determining the effective con- 
duction coefficients of heterogeneous systems," Inzh.-Fiz. Zh., 41, No. i, 172-184 
(1981). 

4. Yu. A. Buevich and Yu. A. Korneev, "Dispersion of thermal waves in granular material," 
Inzh.-Fiz. Zh., 31, No. i, 21-28 (1976). 

5. Yu. A. Buevich, "Influence of phase transition on the heat and mass transfer in disperse 
fluxes," Inzh.-Fiz. Zh., 32, No. 4, 625-631 (1977). 

6. Yu. A. Buevich and Yuo A. Korneev, "Interphase mass and heat transfer in a concentrated 
disperse system," Inzh.-Fiz. Zh., 25, No. 4, 594-600 (1973). 

7. P. G. Romankov, No B. Rashkovaskaya, and V. F. Frolov, Mass-Transfer Processes in Chemi- 
cal Technoloty [Russian translation], Khimiya, Leningrad (1975). 

8. M. V. Lykov and B. I. Leonchik, Spray Dryers [in Russian], Mashinostroenie, Moscow 
(1966). 

9. V. M. Ramm, Absorption of Gases [in Russian], Khimiya, Moscow (1976). 
i0. B. Ya. Lyubov, Diffusional Processes in Inhomogeneous Solid Media [in Russian], Nauka, 

Moscow (1981). 
i!. E. N. Lightfoot, Transport Phenomena and Living Systems, Wiley (1974). 
12. Yu. A. Buevich and I. N. Shchelchkova, "Flow of dense suspensions," Progr. Aerospace 

Sci., 18, No. 2, 121-150 (1978). 
13. I. N. Shchelchkova, "Macroscopic description of transfer processes in finely disperse 

systems," Author's Abstract of Candidate's Dissertation, IPM AN SSR, Moscow (1979). 
14. Yu. A. Buevich, Yu. A. Korneev, and I. N. Shchelchkova, "Heat or mass transfer in a dis- 

perse flux," Inzh.-Fiz. Zh., 30, No. 6, 979-985 (1976). 
15. N. V. Antonishin, M. A. Geller, and A. L. Parnas, "Hyperbolic equation of heat conduc- 

tion of disperse systems," Inzh.-Fiz. Zh., 26, No. 3, 503-507 (1974). 
16. A. V. Lykov, "Certain problematic questions of the theory of heat and mass transfer," 

Inzh.-Fiz. Zh., 2-6, No. 4, 781-790 (1974). 
17. J. Verhas, "Heat conduction with relaxation," Per. Polytech. Mech. Eng., 21, No. 2, 271- 

277 (1977). 
18. G. P. Yasnikov and V. S. Belousov, "Effective thermodynamic functions of a gas with 

solid particles," Inzh.-Fiz. Zh., 34, No. 6, 1085-1089 (1978). 

1219 


